Bài 18: Bội chung nhỏ nhất
Luyện tập 1 (trang 59-60)
Bài 152 (trang 59 sgk Toán 6 Tập 1): Tìm số tự nhiên a nhỏ nhất khác 0 biết rằng a chia hết cho 15 và a chia hết cho 18.
Lời giải:
Ta có a ⋮ 15 và a ⋮18 ⇒ a ∈ BC(15, 18).
a là số nhỏ nhất nên a = BCNN(15 ; 18).
Mà 15 = 3.5; 18 = 2.32.
⇒ BCNN(15; 18) = 2.32.5 = 90.
Vậy a = 90.
Kiến thức áp dụng
Muốn tìm BCNN của hai hay nhiều số ta làm như sau:
+ Phân tích các số ra thừa số nguyên tố.
+ Chọn ra các thừa số nguyên tố chung và riêng.
+ Lập tích các thừa số đã chọn; mỗi thừa số lấy số mũ lớn nhất của nó. Tích đó chính là BCNN cần tìm.
Bài 153 (trang 59 sgk Toán 6 Tập 1): Tìm các bội chung nhỏ hơn 500 của 30 và 45.
Lời giải:
Có 30 = 2.3.5; 45 = 32.5
⇒ BCNN(30,45) = 2.32.5 = 90
⇒ BC(30; 45) = B(90) = {0; 90; 180; 270; 360; 450; 540; 630; …}
Vậy các bội chung nhỏ hơn 500 của 30 và 45 là: 0; 90; 180; 270; 360; 450.
Kiến thức áp dụng
Bội chung của hai hay nhiều số là bội của BCNN của các số đó.
Bài 154 (trang 59 sgk Toán 6 Tập 1): Học sinh lớp 6C khi xếp hàng 2, hàng 3, hàng 4, hàng 8 đều vừa đủ hàng. Biết số học sinh lớp đó trong khoảng từ 35 đến 60. Tính số học sinh lớp 6C.
Lời giải:
Gọi số học sinh lớp 6C là a.
Học sinh xếp hàng 2, hàng 3, hàng 4, hàng 8 đều vừa đủ nên a là bội của 2, 3, 4, 8.
Hay a ∈ BC(2; 3; 4; 8).
Mà BCNN(2 ; 3 ; 4 ; 8) = 23. 3 = 24.
⇒ BC(2; 3; 4; 8) = B(24) = {0; 24; 48; 72; …}.
Vì số học sinh trong khoảng từ 35 đến 60 nên a = 48.
Vậy lớp 6C có 48 học sinh.
Bài 155 (trang 60 sgk Toán 6 Tập 1): Cho bảng:
a | 6 | 150 | 28 | 50 |
b | 4 | 20 | 15 | 50 |
ƯCLN(a, b) | 2 | | | |
BCNN(a, b) | 12 | | | |
ƯCLN(a, b).BCNN(a, b) | 24 | | | |
a.b | 24 | | | |
a) Điền vào các ô trống của bảng.
b) So sánh tích ƯCLN(a, b).BCNN(a, b) với tích a.b
Lời giải:
a)
– Ở cột thứ hai:
a = 150 = 2.3.52; b = 20 = 22.5
⇒ ƯCLN(a; b) = 2.5 = 10; BCNN(a; b) = 22.3.52 = 300.
ƯCLN(a, b) . BCNN(a, b) = 10.300 = 3000.
a.b = 150.20 = 3000.
– Ở cột thứ ba:
a = 28 = 22.7; b = 15 = 3.5
⇒ ƯCLN(a; b) = 1; BCNN(a; b) = 22.3.5.7 = 420.
ƯCLN(a, b) . BCNN(a, b) = 1.420 = 420.
a.b = 28.15 = 420.
– Ở cột thứ tư:
a = b = 50.
⇒ ƯCLN(a; b) = 50; BCNN(a; b) = 50.
ƯCLN(a, b) . BCNN(a, b) = 50.50 = 2500.
a . b = 2500.
Ta có bảng sau:
a | 6 | 150 | 28 | 50 |
b | 4 | 20 | 15 | 50 |
ƯCLN(a, b) | 2 | 10 | 1 | 50 |
BCNN(a, b) | 12 | 300 | 420 | 50 |
ƯCLN(a, b).BCNN(a, b) | 24 | 3000 | 420 | 2500 |
a.b | 24 | 3000 | 420 | 2500 |
b) Từ bảng trên ta có ƯCLN(a, b).BCNN(a, b) = a.b
<<XEM MỤC LỤC